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Abstract —A rigorous mathematical treatment of microwave network

analyzer calibration and de-embedding proeednres for the two-port error

network representation is employed in order to explain current calibration

techniques in a succinct and homogeneous manner. It is demonstrated that

the essence of throngh-delay de-embedding techniques consists in the use

of two known two-port cahbration standards to obtain pairs of similar

matrices for the inpnt and output error adapters. Once the characteristic

vectors for these matrices are obtained, a number of different approaches

may he employed in order to solve for the sealing constants.

I. INTRODUCTION

A LTHOUGH the concepts underlying the through-

delay-reflect de-embedding technique were first

enunciated in 1975 [1], and numerous articles have subse-

quently appeared describing various aspects of this method

[2]-[8], a unified and concise treatment of the problem has

not, to the authors’ knowledge, been presented.

The object of this paper is to present a simple mathe-

matical formulation of this method so as to enable the

basic concepts to be clearly grasped, thereby opening the

way to innovative solutions to particular measurement

~roblems. Two such problems are dealt within this paper,

by way of example: the case of a two-port network com-

posed of symmetrical error adapters and the case of a

device-under-test mounted in a non-50-Q environment.

The traditional approach to error correction is via a

flow-graph representation of the errors involved. However,

if the flow graph permits an insight into the physical

causes behind the transmission and reflection errors ob-

served, it often obscures some simple and elegant mathe-

matical solutions. A hybrid approach combining flow

graphs and mathematics favored by some authors is, in our

op@on, often confusing. For these reasons only the math-

ematical formulation is proposed in this paper.

II. MATHEMATICAL FORMULATION

A. Presentation of the Problem

Fig. 1 represents a typical two-port measurement prob-

lem: an unknown two-port network is to be measured via

two unknown two-port error matrices X and Y [4]. As is
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Fig. 1. Typical two-port measurement problem: extraction of device-

under-test data from two-port measurement data including error
adapters X and Y.

typical in the two-port error adapter representation, errors

due to leakage paths between error matrices X and Y and

errors linked to’ the variation of source and load impedances

with the measurement path are neglected. It is necessary to

solve the error matrices X and Y by a “calibration”

procedure before the unknown two-port can be measured.

One method of doing this is to replace the unknown

device-under-test with two known transmission devices, in

general a back-to-back connection of X and Y (through)

and a nonreflective 50 Q line of known electrical length

(delay).

B. Calibration with Transmission Lines

The use of the through and delay line connection proce-

dure, in its most general form, is summarized in Fig. 2. It

can be mathematically represented using R or cascade

matrices as follows [4], [9]:

R ~l=Rx. R1l. Ry (1)

R ~z=Rx.R12.Ry (2)

where RM1 refers to the R-matrix equivalent of the S

parameters measured via a two-port connecting R matrix

R ~1, and RMZ refers to the R-m:~trix equivalent of the S
parameters measured via a two-port connecting R matrix

R T2.

A solution in terms of the error network X is obtained

by substituting for Ry in (1) and (2) [9]:

RM. RX= RX. RT (3)

with

RM ==RM2. (RM1)-l
“r% a ‘4)

and

RT=Rr2. (Rjrl)-1. (5)
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Fig. 2. Use of two known two-port networks TI and T2 to solve for

error adapters X and Y.

The error matrix Y may be addressed in an identical

manner by substituting for Rx in (1) and (2) [9]. Thus

RY. RN= R;. RY (6)

with

(7)

and

R$=(R~l)-1*R~2. (8)

In order for (6) to be mathematically identical to (have

the same solution as) (3), it is rewritten as follows:

(RN)~(Ry)~=(Ry)~o(R~)~ (9)

where the superscript T indicates matrix transposition.

C. General Solution for the Transmission Problem

Equations (3) and (9) are the well-known similar equa-

tion relationships linking similar matrices R~ and R ~,
and (R ~ )~ and (R $)~ respectively. We shall first solve

for (3).

1) Solution for Rx: Similar equations have the following

properties:

@ R~ and R ~ have identical characteristic (eigen)val-

ues Al and AZ.

● These characteristic values may be written in matrix

form (the spectral matrix):

[1AA=O+
2

● If the transforming matrices composed of the charac-

teristic (eigen)vectors of R~ and R ~ are designated,

respectively, M and T, we can write

R~=M. A. M-l (10)

R~=T.A, T-l. (11)

Consider the case where R ~1 represents the through

connection, i.e., R ~1= U, the unitary matrix, and R ~2 is a

matrix representing a reflectionless line of electrical length

1 between X and Y. Thus

where y is the complex propagation constant. Since

R~=R; =Rr2

(12)

(13)

we may conclude that the characteristic values of R ~ and

R~ are Al= e-’i and AZ= eyl. Substitution of (10) and

(11) into (3) enables us to obtain, after some simple

manipulation,

M.A.M-l=RxT.A.(~xT)-l

from which we obtain

since the transforming matrix of T is the unitary matrix

multiplied by constants set equal to unity in this case.

2) Solution for R ~: The quantities (R \)T and (R ~ )T
will have the same characteristic roots Al = e ’71 and Al=

eY[ as in the previous case since R ~ = (R ~)T. The coordi-

nate transforming equation for (R ~ )T is

(RN) ’= N’A.(N’)-l (15)

from which we may define, as with (14),

R;~NT (16)

D. Particular Solutions

1) Characteristic Vectors for Rx: The characteristic vec-

tors of Rx may be written arbitrarily as

[’ I~=kii pi

kp
(17)

where k and p are unknown complex constants yielding

the particular solution corresponding to the error matrix

X. The terms Z and ~ are obtained by setting the second

term of each characteristic vector equation to unity. The R

parameters of error matrix X are. in terms of its S

parameters,

1

[ 1(S,,);-(h) x(%,)x (s,, )/y (18)

‘= (s12).
-( S22)X 1“

A term-by-term comparison between (17) and (18) reveals

that two independent linear equations are necessary in

order to solve for k and p. The fact that the error

networks are reciprocal, being passive and nongyromag-

netic, gives the first of these, and enables us to set the

determinant of M to unity [9], [10]:

1

J’”k= (ii-z)”
(19)

A second passivity equation, the relationship IS1ll 2 = 1S2212,

is difficult to exploit since it has several solutions.

A similar mathematical treatment may be applied to

network Y

(20)

where r and s are the unknown complex constants corre-

sponding to the particular solution required for error ma-

trix Y, and Z and ~ are the vectors obtained by setting the

second term of each characteristic vector equation to unity.
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The reciprocity condition corresponding to (17) is, for

network Y,

(21)

2) Coupled Matrices: The main problem with two-port

lossless calibrations is that the input and output networks

are inextricably linked, as can be seen by substituting the

characteristic vector’ matrices M and N (eqs. (17) and

(20)) into (l):

[

kr.~?+ps.~~ kr. ii+ps. $
R–

‘1– kr”?+ps. ~ 1kr+ps “
(22)

Each term in (22) is a function of constants kr and ps,

and the input and output network matrices are thus cou-

pled. One way of decoupling them is to use a very lossy

two-port calibration network [12]; another is to disconnect

X and Y and apply a reflective load to each. Before doing

this, however, we observe that the ratio of the second term

of (22) to the fourth gives the following useful relation-

ship :

p2. (s/r) (ti-F)Z+il
(SII)MI= pZ. (s/r) (~-Z)+l (23)

or

‘s=’~ ’24)

3) Symmetrical Error Network: If the error matrix X is

symmetrical we can further apply the relationship S1l = Szz

in order to obtain a second linear relationship:

The sign of p depends on the physical length of the error

network X, since this affects the transmission phase ( S12) ~,

as shown by Meys [8]. Having solved for p, k is obtained

from (19), and the error matrix X is fully resolved.

Y may be obtained by applying the same approach, in

which case the relevant equations are

and

(26)

Note that if either Rx or R ~ is obtained by applying this

symmetry property, the unknown matrix (R ~ or Rx) is

obtained by inverse matrix multiplication from (l). This

method, which may be termed the through-delay approach,

has never, to the authors’ knowledge, explicitly appeared

in the literature, although similar methods are described in

Fig. 3. (a) Reflect measurement using two known reflective loads ry
and ry. (b) Reflect measurement using the same load r on the device
connection port of both adapters.

‘f) (SZ2)X = (S12) ~: A special case of the through-delay
approach has been brought to the author’s attention [11]

where ( Slz) x = (Slz) ~. Application of this condition using

(17), (20), and (22) yields

p=s (27a)

()1
— = (S2,)MI
kr + ps

(27b)

after which the parameters k and r are obtained from (19)

and (21) respectively.

E. Reflective Measurement

There are two approaches described in the literature:

two well-known reflective loads 17x and 17Y are applied

independently to the “free” ports of the error networks X

and Y [1], [2], and an unknown reflective load r is applied

to each of the error networks X and Y in turn [3]-[6].

Consider each case in turn.

1) Known Reflective Loads rx and rY: The approach

followed is summarized in Fig. 3. ‘The reflection coefficient

rl is measured on the network analyzer with load rx

attached to error network X, and r2 is measured with 17Y

connected to Y. Consider the case of X

[

(s,2) ,(s21)X rx
rl= (sJX+ —

l–(s22)xrx 1
(28)

or

rl =
pz+kii. rx

p+k.~

whence

(29)

where (29) is obtained by applying (19). The error matrix

Y may be resolved in an identical manner:

(30)

2) Unknown Reflective Load l?: This case is summarized

[7]-[9]. schematically in Fig. 4. Since rx = 17Y= 17, multiplication
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(a)

(b)

Fig. 4. (a) Two-port measurement problem applied to a device embed-

ded in a non-50-fl environment. (b) Introduction of two fictitious
impedance transformers to convert between Z. and Z&.

of (29) and (30) yields

/

r2(ii-rJ(r2+z)
ps=+

(ii- Z)(z-J)(r, -Z)(r, +J) “ ’31)

Equating (31) and (24) gives

‘=’~ ’32)

Equation (32) is identical to that derived in [3] in a rather

more complicated manner. Having obtained r, the param-

eters p and s are calculated from (29) and (30), and k and

r are obtained from (19) and (21) respectively.

III. DISCUSSION

Although the mathematical approach we have outlined

above is concise and readily programmable, it does give

rise to several equations in which a sign ambiguity exists.

We shall now consider the physical meaning of the param-

eters in order to arrive at the correct result.

The first of these ambiguities concerns the roots Al and

A z; it is simply resolved since the roots are reciprocal, and

the root Al= exp ( – yl) is that having a modulus less than

unit y:

Al= e-”(cos~ + jsin~) (33)

where the propagation constant y = a + j~.

The second ambiguity concerns the characteristic vec-

tors a and b for the input error network and c and d for

the output error network. Although the vectors corre-

spond, respectively, to roots Al and A ~, the relationship

between these roots is such that an identical equation for

vectors a and b is obtained [3], [4]:

where roll, mlz, m ~1, and mzz are defined (4). Since 1~1,

the error linked to the reflection coefficient of the input
reflectometer, will be much smaller than 1El, the correct

sign can be apportioned to each. In an identical manner,

the vectors F and ~ are selected knowing that 1~1<<121 [3].

In the symmetrical matrix case (eqs. (25) and (26)) and

the reflective load cases (eqs. (29) and (30)) further sign

ambiguities occur, this time for the constants p and s.

However, when using the error matrices Rx and R ~ for

inverse matrix multiplication in order to correct unknown

measured data, the constants k, p, r, and s do not appear

alone but rather in pairs ( ps, ks, pr, and kr ), as can be

seen from the following:

R W=(RX)-’RiWdut(Ry )-’

or

(35)

(36)

where R~dut (elements m~l, m~z, m$l, m;~ ) represents the

cascade matrix form of the measured S parameters corre-

sponding to device-under-test R ~dut (elements

t~l, t~z, t~l, tL), and T;, T2’, T~’, and T; are_ funct~ons of
the previously calculated vectors Z, b, Z, d and

m~l, m~2, m;l, m;2.

The sign ambiguity is lifted for ps and kr by applying

successively different signs to them and substituting these

values and those of ii, ~, F, and ~ into (36) for the case of

the delay line. We thereby obtain the signs of ps and kr in

terms of e- ~[ and e71,known quantities which have been

derived independently:

ps = e- Y1/T[ (37a)

kr = eY’/T~. (37b)

Multiplication of (19) and 37(a) and of (19) and (37b)

enables us to determine the signs of ks and pr respec-

tively.

Finally, in the self-calibration case (eq. (32)), the sign of

r is obtained from an approximate knowledge of its phase

(short circuit or open circuit) [3], [4].

IV. APPLICATIONS

A. Arbitrary Line Impedance Standards

Although non-50-Q standards have been used in an ad

hoc manner for many years, particularly for on-wafer

measurements, no theoretical justification has appeared in

the technical literature. Such a justification is, however,

easy to obtain by applying the mathematical approach.

Consider the case, typical in GaAs on-wafer measure-
ments, where a non-50-Q line of impedance Z& is fed via

two error matrices A and B from a 50 Q environment

(Fig. 4(a)). In order to understand how the through-delay

reflect approach automatically corrects for the change in

line impedance provided that the standards are realized with

the same line impedance, consider the use of two hypotheti-

cal impedance transformers, A‘ and B‘, applied respec-

tively to ports A and B (Fig. 4(b)). Note that, as in the

case of Meys [8], the two transformers A‘ and B‘ are

identical, but with input and output ports inverted. Fig. 5

illustrates schematically how the correction for A‘ and B‘

may be made by integrating the transformers into the error
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A A Zbl,e-pt B’ B

—
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A A Z’Ol,e-pe~ B’ B

DELAY/LINE

mr “m
REFLECT

Fig. 5. Application of the through-delay-reflect technique to correct for

error adapters including impedance transformers A‘ and B’.

networks, (l)-and (2) thereby becoming

R ~,= (R~R~J) .RT1. (RBrR~) (37)

R ~,=(R~R~t).RT,(R~R~) (38)

and the methods outlined in Section H now apply (Fig. 5)

with R ~dui, the unknown device parameters, normalized to

Z;l.

B. Other Calibration Standards

The mathematical approach described may also be used

to analyze the different calibration standards described in

[12], with ‘the proviso that these must include two known

two-port calibration networks (i.e., (1), and (2) must exist).

In the example of the through-attenuation network cited in

[12], if the through standard is used to obtain (1) and the

known two-port network is used to obtain (2), the final

attenuation calibration network need only be reciprocal

for the error networks Rx and Ry to be solved. The

derivation of the relevant equations pertaining to this case

is too long to include in this paper, and will form the basis

of another article.
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V. CONCLUSION

A unified mathematical treatment of the various ap-

proaches to the through-delay-reflect calibration problem

has been presented. The prime advantage of a rigorous

description of the two-port error-correction problem is

that it enables the mathematical validity of the various

calibration techniques to be easily appreciated and innova-

tive calibration methods to be derived.
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