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A Unified Mathematical Approach to
Two-Port Calibration Techniques
and Some Applications

ROBERT A. SOARES, MEMBER, IEEE, PASCAL GOUZIEN, PIERRE LEGAUD,
AND GEORGES FOLLOT

Abstract — A rigorous mathematical treatment of microwave network
analyzer calibration and de-embedding procedures for the two-port error
network representation is employed in order to explain current calibration
techniques in a succinct and homogeneous manner. It is demonstrated that
the essence of through-delay de-embedding techniques consists in the use
of two known two-port calibration standards to obtain pairs of similar
matrices for the input and output error adapters. Once the characteristic
vectors for these matrices are obtained, a number of different approaches
may be employed in order to solve for the scaling constants.

1. INTRODUCTION

LTHOUGH the concepts underlying the through-

delay-reflect de-embedding technique were first
enunciated in 1975 [1}, and numerous articles have subse-
quently appeared describing various aspects of this method
[2]-[8], a unified and concise treatment of the problem has
not, to the authors’ knowledge, been presented.

The object of this paper is to present a simple mathe-
matical formulation of this method so as to enable the
basic concepts to be clearly grasped, thereby opening the
way to innovative solutions to particular measurement
problems. Two such problems are dealt with in this paper,
by way of example: the case of a two-port network com-
posed of symmetrical error adapters and the case of a
device-under-test mounted in a non-50-Q environment.

The traditional approach to error correction is via a
flow-graph representation of the errors involved. However,
if the flow graph permits an insight into the physical
causes behind the transmission and reflection errors ob-
served, it often obscures some simple and elegant mathe-
matical solutions. A hybrid approach combining flow
graphs and mathematics favored by some authors is, in our
opjinion, often confusing. For these reasons only the math-
ematical formulation is proposed in this paper.

II. MATHEMATICAL FORMULATION
A. Presentation of the Problem

Fig. 1 represents a typical two-port measurement prob-
lem: an unknown two-port network is to be measured via
two unknown two-port error matrices X and Y [4]. As is
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Fig. 1. Typical two-port measurement problem: extraction of device-
under-test data from two-port measurement data including error
adapters X and Y.

typical in the two-port error adapter representation, €rrors
due to leakage paths between error matrices X and ¥ and
errors linked to the variation of source and load impedances
with the measurement path are neglected. It is necessary to
solve the error matrices X and Y by a “calibration”
procedure before the unknown two-port can be measured.
One method of doing this is to replace the unknown
device-under-test with two known transmission devices, in
general a back-to-back connection of X and Y (through)
and a nonreflective 50 Q line of known electrical length
(delay).

B. Calibration with Transmission Lines

The use of the through and delay line connection proce-
dure, in its most general form, is summarized in Fig. 2. It
can be mathematically represented using R or cascade
matrices as follows [4], [9]:

Ry1=Ry-Ryy'Ry
Ry =Ry Ryy Ry

1)
(2)

where R,,, refers to the R-matrix equivalent of the S
parameters measured via a two-port connecting R matrix
R;,, and R,,, refers to the R-matrix equivalent of the S
parameters measured via a two-port connecting R matrix
.R T2- .
A solution in terms of the error network X is obtained
by substituting for R in (1) and (2) [9]:
Ry Ry=Ry-R; (3)
with

-1 My
, RM==RM2'(RM1) =:[m21

(4)

le]
My

and

RT'_‘RTz'(Rﬂ)_l-

)
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Fig. 2. Use of two known two-port networks 7; and 7, to solve for

error adapters X and Y.

The error matrix ¥ may be addressed in an identical
manner by substituting for R in (1) and (2) [9]. Thus
Ry -Ry=R7 Ry (6)

with
fyq
oy

Ry=(Ro) "Raa= |00 2] )

and
R’TZ(RTI)_I.RTZ' (8)

In order for (6) to be mathematically identical to (have
the same solution as) (3), it is rewritten as follows:

(Ry) - (Ry) = (Ry)"-(Ry)"
where the superscript T indicates matrix transposition.

(9)

C. General Solution for the Transmission Problem

Equations (3) and (9) are the well-known similar equa-
tion relationships linking similar matrices R,, and R,
and (Ry)" and (R4)T respectively. We shall first solve
for (3).

1) Solution for R : Similar equations have the following
properties:

® R, and R, have identical characteristic (eigen)val-
ues A, and A,.

¢ These characteristic values may be written in matrix
form (the spectral matrix):

Ar O
A= [ 0 A, }
¢ If the transforming matrices composed of the charac-

teristic (eigen)vectors of R,, and R, are designated,
respectively, M and T, we can write

Ry=M-A-M~! (10)

R, =T-A-T™ L (11)

Consider the case where R, represents the through
connection, i.e.. R,y =U, the unitary matrix, and R,, is a

matrix representing a reflectionless line of electrical length
/ between X and Y. Thus

_le™ 0
R- |0 (12
where v is the complex propagation constant. Since
R;=R7 =Ry,
_TALT-1_ e ¥ 0
=T-A-T {0 NJ (13)
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we may conclude that the characteristic values of R, and
R, are A;=e " and A, =e". Substitution of (10) and
(11) into (3) enables us to obtain, after some simple
manipulation,

M-AM~'=R,T-A-(R,T) "
from which we obtain

Ry,=MT '&2M

(14)
since the transforming matrix of T is the unitary matrix
multiplied by constants set equal to unity in this case.

2) Solution for Ry: The quantities (R%)T and (Ry)T
will have the same characteristic roots A;=e” " and A, =
e as in the previous case since R, = (R%)!. The coordi-
nate transforming equation for (R )7 is

(Ry)" =NTA-(NT)" (15)

from which we may define, as with (14),

RUVANT

(16)
D. Particular Solutions

1) Characteristic Vectors for R y: The characteristic vec-
tors of R, may be written arbitrarily as

oot

kb (17)

where &k and p are unknown complex constants yielding
the particular solution corresponding to the error matrix
X. The terms @ and b are obtained by setting the second
term of each characteristic vector equation to unity. The R
parameters of error matrix X are. in terms of its §
parameters,

— 1 (SIZ)ZX_(SU)X(SZJ)X (Su)x
M= (Sll)Y[ _(Szz)x ] (18)

A term-by-term comparison between (17) and (18) reveals
that two independent linear equations are necessary in
order to solve for k£ and p. The fact that the error
networks are reciprocal, being passive and nongyromag-
netic, gives the first of these, and enables us to set the
determinant of M to unity [9], [10]:

1

PGy

(19)
A second passivity equation, the relationship |S},|2 =[S,,|?,
is difficult to exploit since it has several solutions.

A similar mathematical treatment may be applied to
network Y-

NT=[rE sc?] (20)

r A
where 7 and s are the unknown complex constants corre-
sponding to the particular solution required for error ma-
trix ¥, and ¢ and d are the vectors obtained by setting the
second term of each characteristic vector equation to unity.
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The reciprocity condition corresponding to (17) is, for
network Y,

1

2) Coupled Matrices: The main problem with two-port
lossless calibrations is that the input and output networks
are inextricably linked, as can be seen by substituting the
characteristic vector matrices M and N (egs. (17) and
(20)) into (1):

r-s=

_ | kr-ac+ ps-bd kr-a+ ps-b

R,,= -
ik kr-c+ ps-d kr + ps

(22)
Each term in (22) is a function of constants kr and ps,
and the input and output network matrices are thus cou-
pled. One way of decoupling them is to use a very lossy
two-port calibration network [12]; another is to disconnect
X and Y and apply a reflective load to each. Before doing
this, however, we observe that the ratio of the second term
of (22) to the fourth gives the following useful relation-
ship:

p*(s/r)(a—b)b+a
p*(s/r)(@-b)+1

(23)

(S11)M1 =

or

s=+\/ _ ((Sn)Ml_‘:’) _
P - GSwm@-0)-a) -

3) Symmetrical Error Network: If the error matrix X is
symmetrical we can further apply the relationship S;; = S,,
in order to obtain a second linear relationship:

k=-pb

1
o=l

The sign of p depends on the physical length of the error
network X, since this affects the transmission phase (S;,) y,
as shown by Meys [8]. Having solved for p, k is obtained
from (19), and the error matrix X is fully resolved.

Y may be obtained by applying the same approach, in
which case the relevant equations are

(24)

whence

(25)

r=—sJ

/ 1
s=4 m

Note that if either Ry or Ry is obtained by applying this
symmetry property, the unknown matrix (R, or Ry) is
obtained by inverse matrix muitiplication from (1). This
method, which may be termed the through-delay approach,
has never, to the authors’ knowledge, explicitly appeared
in the literature, although similar methods are described in

(71-[91.

and

(26)
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Fig. 3. (a) Reflect measurement using two known reflective loads T'y
and T (b) Reflect measurement using the same load I on the device
connection port of both adapters.

4) (S;5)x=(S,,)y: A special case of the through-delay
approach has been brought to the author’s attention [11]
where (S;,) y = (S12)y. Application of this condition using
(17), (20), and (22) yields

p=s (27a)
1

kr + ps

(27b)

= ( S1)

after which the parameters £ and » are obtained from (19)
and (21) respectively.

E. Reflective Measurement

There are two approaches described in the literature:
two well-known reflective loads T'y and I', are applied
independently to the “free” ports of the error networks X
and Y [1], [2], and an unknown reflective load I is applied
to each of the error networks X and Y in turn [3]-[6].
Consider each case in turn.

1} Known Reflective Loads 'y and T'y: The approach
followed is summarized in Fig. 3. The reflection coefficient
I, is measured on the network analyzer with load I'y
attached to error network X, and I, is measured with I'y
connected to Y. Consider the case of X:

S S. r
Iy=(Su)x + [( 1”_)(’;(2513 ’;XX] (28)
or
3 p5+k5-_&
Vo p+keTy
whence
I'y(a-T
”zi\/(a—x%)(?ﬁ)T) 29)

where (29) is obtained by applying (19). The error matrix
Y may be resolved in an identical manner:

Iy(I,+¢)
s:i U — .

(- a)(L+d) (0)

2) Unknown Reflective Load T': This case is summarized
schematically in Fig. 4. Since I'y =I'y = I, multiplication
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Fig. 4. (a) Two-port measurement problem applied to a device embed-

ded in a non-50-Q environment. (b) Introduction of two fictitious
impedance transformers to convert between Z, and Zj;.

of (29) and (30) yields

B r*(a—T)(L,+¢)
P @R (- () |
Equating (31) and (24) gives

+ \/ ((Sll)Ml_ 5)(1‘1——5)(I‘2+ J)

(31)

b= ((Sll)Ml_l_))(r1~a)(r2+E) ' (32)

Equation (32) is identical to that derived in [3] in a rather
more complicated manner. Having obtained I, the param-
eters p and s are calculated from (29) and (30), and k& and
r are obtained from (19) and (21) respectively.

III. DiscussioNn

Although the mathematical approach we have outlined
above is concise and readily programmable, it does give
rise to several equations in which a sign ambiguity exists.
We shall now consider the physical meaning of the param-
eters in order to arrive at the correct result.

The first of these ambiguities concerns the roots A; and
A,; it is simply resolved since the roots are reciprocal, and
the root A, = exp(— /) is that having a modulus less than
unity:

A =e *(cosB+ jsinB)

where the propagation constant vy = a + jB.

The second ambiguity concerns the characteristic vec-
tors a and b for the input error network and ¢ and d for
the output error network. Although the vectors corre-
spond, respectively, to roots A; and A,, the relationship
between these roots is such that an identical equation for
vectors a and b is obtained [3], [4]:

5}__(’”22“’”11)_'_ My~ My 24__’_”_13
b 2my, - 2my my
where m,;, my,, m,,, and m,, are defined (4). Since |b|,
the error linked to the reflection coefficient of the input
reflectometer, will be much smaller than |aj, the correct
sign can be apportioned to each. In an identical manner,
the vectors ¢ and d are selected knowing that |d| < |¢| [3].

In the symmetrical matrix case (egs. (25) and (26)) and
the reflective load cases (egs. (29) and (30)) further sign
ambiguities occur, this time for the constants p and s.
However, when using the error matrices Ry and R, for

(33)

(34)
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inverse matrix multiplication in order to correct unknown
measured data, the constants k, p, r, and s do not appear
alone but rather in pairs ( ps, ks, pr, and kr), as can be
seen from the following:

Rrgue= (RX)_IRMdut(RY)_I

or
[ 1], t1'2-= [ p —pb .{mh m{z]'[ s —r]
1 ] -k ka my my —sd rc

(35)
[t t1:2— _ [ psTl’/ ‘Pﬂ:z/ (36)
|50 ]| | — kTS krT}

where R, (clements m{,, m{,, m4;, mj,) represents the
cascade matrix form of the measured S parameters corre-
sponding to device-under-test R;,,, (elements
Hi Has 15y, 1), and Ty, T), Ty, and T, are functions of
the previously calculated vectors a, b, ¢, d and
My, Miy, My, M.

The sign ambiguity is lifted for ps and kr by applying
successively different signs to them and substituting these
values and those of a, b, ¢, and d into (36) for the case of
the delay line. We thereby obtain the signs of ps and kr in
terms of e~ " and e, known quantities which have been
derived independently:

(37a)
kr=e"/Ty. (37b)

Multiplication of (19) and 37(a) and of (19) and (37b)
enables us to determine the signs of ks and pr respec-
tively.

Finally, in the self-calibration case (eq. (32)), the sign of
I' is obtained from an approximate knowledge of its phase
(short circuit or open circuit) [3], [4].

ps=e "/T{

IV. APPLICATIONS
A. Arbitrary Line Impedance Standards

Although non-50-Q standards have been used in an ad
hoc manner for many years, particularly for on-wafer
measurements, no theoretical justification has appeared in
the technical literature. Such a justification is, however,
easy to obtain by applying the mathematical approach.

Consider the case, typical in GaAs on-wafer measure-
ments, where a non-50-& line of impedance Zj; is fed via
two error matrices 4 and B from a 50 € environment
(Fig. 4(a)). In order to understand how the through-delay
reflect approach automatically corrects for the change in
line impedance provided that the standards are realized with
the same line impedance, consider the use of two hypotheti-
cal impedance transformers, A’ and B’, applied respec-
tively to ports 4 and B (Fig. 4(b)). Note that, as in the
case of Meys [8], the two transformers 4’ and B’ are
identical, but with input and output ports inverted. Fig. 5
illustrates schematically how the correction for 4’ and B’
may be made by integrating the transformers into the error
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o]

REFLECT
Fig. 5. Application of the through-delay-reflect technique to correct for

error adapters including impedance transformers A’ and B’.
networks, (1) and (2) thereby becoming
Ry = (RARA’) ‘Rpy (RB’RB)

(37)
(38)

and the methods outlined in Section II now apply (Fig. 5)

with R,,,, the unknown device parameters, normalized to
Z§,.

Ryn= (RARA') Ry (RB’RB)

B. Other Calibration Standards

The mathematical approach described may also be used
to analyze the different calibration standards described in
{12], with 'the proviso that these must include two known
two-port calibration networks (i.e., (1) and (2) must exist).
In the example of the through-attenuation network cited in
{12], if the through standard is used to obtain (1) and the
known two-port network is used to obtain (2), the final
attenuation calibration network need only be reciprocal
for the error networks R, and Ry to be solved. The
derivation of the relevant equations pertaining to this case
is too long to include in this paper, and will form the basis
of another article.

V. CONCLUSION

A unified mathematical treatment of the various ap-
proaches to the through-delay-reflect calibration problem
has been presented. The prime advantage of a rigorous
description of the two-port error-correction problem is
that it enables the mathematical validity of the various
calibration techniques to be easily appreciated and innova-
tive calibration methods to be derived.
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